" />

Everypixel trains neural network to measure aesthetic beauty in stock images

Everypixel trains neural network to measure aesthetic beauty in stock images

A new stock image search engine, Everypixel, is beta testing its unique algorithm to measure the aesthetics of stock images through neural networks.

Everypixel’s team trained a neural network to see the beauty in photos the same way humans do. While the company specifically built the algorithm to identify and weed out the most aesthetically-pleasing stock images from the ugly ones, it also works with basically any type of image.

Once logged in, you can either upload or copy an image URL to Everypixel’s Aesthetics platform, and it generates a percentage of whether the photo is “awesome” or not. (Editor’s note: The platform is now live as of March 15).

After playing around with the software, it appears to this writer that your everyday, run-of-the-mill selfie gets a low score while images of landscapes, diversity, and some works of art receive higher scores.

A surprisingly cool and accurate feature of the platform is its suggested tags. It analyzes each image and suggests tags that are true to the image without erroneous labels.

Here is an example that Everypixel had on their website. As you can see it is very generic and business-oriented, and it gets a score of zero. I cringe to think how many stock photos I’ve used on The Sociable that are like-wise in aesthetics, but hey! that’s what happens when you have to deal with licensing issues.

stock images

Compare the above image with another stock photo that Everypixel had on file and you can get a glimpse as to some of the factors the algorithm takes into account, especially when analyzing the suggested tags that are generated. They seem to favor diversity, ethnicity, and togetherness.

stock images

By now, you may be wondering how it actually works, rather than me speculating based on a few primitive tests. I’ll let the experts speak for themselves.

To develop its algorithm, the team at Everypixel asked designers, editors and experienced stock photographers to help generate a training dataset.

They tested 956,794 positive and negative patterns, and their “‘Heartless algorithm’ learned to see the beauty of shots in the same way as you do.”

The neural network would estimate a visual quality of every image and apply aesthetic score to every file. Later on this data would take part in the overall mix of ranking factors and help improve search results by bringing aesthetically better images to the first pages.

In a nutshell, there is solid science and methodology behind the algorithm, and it is accurate in evaluating what it was designed to do, measure the “awesomeness” of stock images.

Out of curiosity, I wanted to test it on well-known works of art.

Here’s a quick comparison between the “awesomeness” of Van Gogh’s Starry Night and Da Vinci’s Mona Lisa, with the understanding that the algorithm was designed specifically to analyze stock photos and not well-known masterpieces.

stock images

stock images

The platform may be biased when it comes to works of art, but for analyzing stock images, it’s pretty spot-on.

Now, let’s venture into the twilight zone. What if we analyze the awesomeness of the image that was just analyzed for awesomeness? In other words, what does this above image of the Mona Lisa score when it is plugged back in the same form as above like a Russian doll?

stock images

Bingo! The awesomeness quality lowers each time the image is recycled, which is exactly what it should do. Kudos!

Editor’s Note: This article was updated on March 16 to reflect that the beta version went live on March 15.

View Comments (3)

Tim Hinchliffe is a veteran journalist whose passions include writing about how technology impacts society and Artificial Intelligence. He prefers writing in-depth, interesting features that people actually want to read. Previously, he worked as a reporter for the Ghanaian Chronicle in West Africa, and Colombia Reports in South America. tim@sociable.co

More in Technology

suicidal robot

Memorial setup for suicidal robot that was in way over its head

Sam Brake GuiaJuly 21, 2017
hackers cryptocurrency

Hackers Steal $7M of Cryptocurrency Within 13 Minutes of CoinDash ICO Launch

Sam Brake GuiaJuly 21, 2017
bitcoin users

Bitcoin users: who are they? Infographic

Ben AllenJuly 20, 2017
google glass

Google Glass Pulls a Lazarus With Eyes on Enterprise Market

Sam Brake GuiaJuly 19, 2017
event planning

Event planning now has its own clever search engine for quotes

Ben AllenJuly 19, 2017
ai risk

AI is so ethereal that people don’t understand its ‘existential risk’ to humanity: Musk

Ben AllenJuly 19, 2017
ai teaching

AI is Building its Own Version of Our World, Teaching Itself to Walk and Talk

Omar ElorfalyJuly 18, 2017
augmented and virtual reality

Overcoming Decision Paralysis With Augmented and Virtual Reality

Sam Brake GuiaJuly 14, 2017

Will scrub toilets for Wifi? 22K people accidentally agree to community service for Wifi

Sam Brake GuiaJuly 14, 2017